Speaker age estimation for elderly speech recognition in European Portuguese
نویسندگان
چکیده
Phone-like acoustic models (AMs) used in large-vocabulary automatic speech recognition (ASR) systems are usually trained with speech collected from young adult speakers. Using such models, ASR performance may decrease by about 10% absolute when transcribing elderly speech. Ageing is known to alter speech production in ways that require ASR systems to be adapted, in particular at the level of acoustic modeling. In this study, we investigated automatic age estimation in order to select age-specific adapted AMs. A large corpus of read speech from European Portuguese speakers aged 60 or over was used. Age estimation (AE) based on i-vectors and support vector regression achieved mean error rates of about 4.2 and 4.5 years for males and females, respectively. Compared with a baseline ASR system with AMs trained using young adult speech and a WER of 13.9%, the selection of five-year-range adapted AMs, based on the estimated age of the speakers, led to a decrease in WER of about 9.3% relative (1.3% absolute). Comparable gains in ASR performance were observed when considering two larger age ranges (60-75 and 76-90) instead of six five-year ranges, suggesting that it would be sufficient to use the two large ranges only.
منابع مشابه
Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملImpact of Age in ASR for the Elderly: Preliminary Experiments in European Portuguese
Standard automatic speech recognition (ASR) systems use acoustic models typically trained with speech of young adult speakers. Ageing is known to alter speech production in ways that require ASR systems to be adapted, in particular at the level of acoustic modeling. This paper reports ASR experiments that illustrate the impact of speaker age on speech recognition performance. A large read speec...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملA large vocabulary continuous speech recognition hybrid system for the portuguese language
Due to the enormous development of large vocabulary, speaker-independent continuous speech recognition systems, which occur essentially for the US English language, there is a large demand of this kind of systems for other languages. In this paper we present the work done in the development of a large vocabulary, speaker-independent continuous speech recognition hybrid system for the European P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014